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Abstract

A new general theory of defects in continuous media is introduced. The general mechanisms of generation and heal-
ing of defects are established. The kinematic description of continuum media with defects is presented. The definition of
defects of different levels is given, and the classification of continuous media with defects is introduced. The hierarchic
structure of the theory of defects is established and discussed. It is shown that all the known types of defects are nat-
urally included in the presented classification of defects. A new broad class of defects of new types is established and
interpreted. It is shown that the existence of new classes of defects is directly connected with some known theoretical
and experimental data on the possibility of generation of such defects as dislocations and disclinations. In particular, it
is shown that the generation of dislocations is necessarily connected with the existence of disclinations. The formal class
of defects being a source of disclinations is specified. A formal generalization of classification of defects is developed to
include the defects of arbitrary finite level. The development of consistent theory of defects is very important from both,
fundamental and applied viewpoints. The potential applications include, in particular, the modeling of dispersed com-
posite materials, porous media, dynamics of surface effects, crackling, cavitation and turbulence.
� 2005 Elsevier Ltd. All rights reserved.

Keywords: Theory of defects; Kinematics of continuous media; Classification of defects; Dislocations; Disclinations
1. Introduction

Recent advances in mechanics of continuous media with defects are closely related to the developments
in our views on strength and plasticity of solids with local disturbances contributing to their overall behav-
ior. Considerable achievements in creation of new technologies and materials are tied to the success in
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experimental and theoretical studies of the atomic structure, properties and behavior of defects, such as dis-
locations, disclinations, point defects, inclusions and interfaces. From one side, the language of the theory
of defects is sufficiently universal means of interaction between the researchers working in mechanics, phys-
ics and material science. It allows describing from the common ground the variety of the different scale
physical processes in the deformable media. From the other side, it is also known that in many cases the
defects are being formed already at the processing stage for a number of new promising nano- and non-
crystallic materials like, for example, amorphous crystallic composites, nano-composites, quasi-crystallic,
nano-quasi-crystallic and some other materials (Gutkin, 2000). These inherited defects affect the overall
operational properties of these materials. That is the reason why the theory of defects became so important
topic in the modern research and gained the considerable development. Many practically important phe-
nomenological models in theory of defects have been significantly revised in the recent studies.

Different types of defects are introduced and analyzed, see, e.g., Nabarro (1967) and Kroner (1962,
1982). The achievements in the continuum theory of defects, see, e.g., Kroner (1982), De Wit (1960,
1973), and Kadic and Edelen (1983), proved to be very important for the further studies of plastic defor-
mation and for modeling of media on account of scale effects of different levels. The development of con-
tinuum models of defects beyond the classical elasticity appears to be very important for the description not
only limited to the short-range interactions typical for the interaction of defects, but also for the modeling
of size-dependent effects in elasticity and plasticity. Recently these models were developed in the framework
of the gradient elasticity (Gutkin, 2000; Aifantis, 1994, 1999) and gradient plasticity (Fleck and Hutchin-
son, 1993, 1997, 2001; Gao et al., 1999). It has been shown that the gradient theories are quite effective in
the analysis of the media at the nano- and micro-levels.

The kinematics of defects is a basis in development of phenomenological continuum models in the theory
of defects. Firstly, the kinematics of defects (inconsistencies) is the most important element in application of
the variational methods for the description of the higher order energetically consistent continuum gradient
models, see Fleck and Hutchinson (1993, 1997, 2001), Gao et al. (1999), and Mindlin (1964). Indeed, the
kinematics of defects allows to establish a set of arguments for the correct formulation of the variation
of energy functional. Secondly, the kinematic analysis allows to establish the relation between the different
types of defects and to analyze the reasons and conditions for their generation and disappearance (Kroner,
1962, 1982; De Wit, 1960, 1973; Aifantis, 1994, 1999; Fleck and Hutchinson, 1993, 1997, 2001; Gao et al.,
1999).

The possibility of generation (or birth) and disappearance (or healing) of the defects of such two levels as
dislocations and disclinations in the continuous media has been established theoretically and experimen-
tally, see, e.g., Kadic and Edelen (1983) and Likhachev et al. (1986). It has been also shown experimentally
that the dislocations on disclinations can be borne and disappear. We are not familiar at the present time
with experimental studies that would establish the sources of disclinations with the similar clarity. Never-
theless it is possible to state that the fact of generation and disappearance of disclinations has been dem-
onstrated experimentally, and therefore the existence of sources of disclinations has been established.

In the present paper, we introduce a new general kinematic theory of defects in continuous media. And
we establish the general mechanisms of existence of defects, their generation (or birth) and disappearance
(or healing).

The significance of the present work is, in particular, in discovering the interconnection between the
developed kinematic models for the continuous media with defects and their role in the hierarchy of
multi-scale modeling.

The outline of the paper is as follows. In Section 2, the Cauchy continuous media with and without de-
fects and the scalar potential are introduced and discussed. In Section 3, the Papkovich–Cosserat media are
defined, the vector potential and vector field of defects are analyzed. The Saint-Venant continuous media
with and without defects, tensor potential and tensor field of defects are introduced and investigated in Sec-
tion 4. The Nth level media models and tensor potential of Nth rank are defined and considered in Section 5.
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That is followed by the classification of the fields of defects developed in Section 6. Section 7 provides the
conclusions for the present study.
2. The Cauchy continuous media model scalar potential

2.1. Defectless Cauchy medium

Let us denote the continuous vector of displacements in the domain V by Ri(M). And let us establish the
conditions under which displacement vector Ri can be represented as a gradient of a scalar function D0(M),
i.e.,
Ri ¼
oD0

oxi
. ð1Þ
For an arbitrary point M0 and a variable point M in the domain V, the scalar potential in Eq. (1) is
determined in terms of the displacement vector Ri in the following way:
D0ðMÞ ¼ D0ðM0Þ þ
Z M

M0

Ri dyi. ð2Þ
The condition of unique determination of the scalar function D0 by means of the displacement vector Ri

in arbitrary point M of the medium under study is equivalent to the condition of independence of the con-
tour integral in Eq. (2) from the integration path:
oRi

oxj
'ijk ¼ 0; ð3Þ
where 'ijk is the permutation symbol.
Note that the vector of curls xk is defined by the formula
xk ¼ � 1

2

oRi

oxj
'ijk.
Therefore, the necessary and sufficient condition of existence of the scalar function D0(M) in Eq. (2) can
be interpreted as a condition of absence of curls xk:
xk ¼ 0. ð4Þ

Eq. (4) defines the ‘‘defectless Cauchy continuous medium’’ as such a medium in which curls are absent and
the displacement field has a scalar potential.

It is well known that for a formal mathematical description of a continuous medium in the framework of
a variational approach (Fleck and Hutchinson, 2001; Mindlin, 1964) it is sufficient to define a list of con-
tinuous arguments. For the defectless Cauchy medium the scalar potential D0(M) can be chosen as a gen-
eralized coordinate. Therefore the defectless Cauchy medium is a model with one degree of freedom.

2.2. Cauchy continuous medium with defects

As it was established above, the displacement field in the defectless Cauchy medium is defined as a gra-
dient of a scalar field D0(M); the contour integral in Eq. (2) does not depend on the integration path; and
vector of curls is zero. In other words, the displacement vector in the defectless Cauchy medium can be de-
fined as a general solution of the homogeneous equation (3). That represents a formal property of the
defectless Cauchy medium that is equivalent to the absence of curls.
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On the contrary to that, the Cauchy continuous medium with the field of defects is characterized by a
presence of non-zero curls:
oRi

oxj
'ijk ¼ �2xk. ð5Þ
And in this case, the general solution of Eq. (5) for the displacement field will consist of two components:
Ri ¼
oD0

oxi
þ D1

i ; ð6Þ
where
oD1
i

oxj
'ijk ¼ �2xk. ð7Þ
The first component in Eq. (6) is a general solution of the homogeneous equation (3), and it is the integrable
part of displacements. The second component in Eq. (6) is a particular solution of Eq. (5), or Eq. (7). And
therefore it defines a part of displacements that is related to the defectness of medium. Function D1

i unlike
of function oD0

oxi
, is non-integrable since the integrability condition for this function is not satisfied.

The following formal definition for the potential of displacement field can be given:
D ¼ D0 þ D1. ð8Þ

Function D(M) in Eq. (8) defines the scalar field in the Cauchy medium. It is represented as a sum of D0(M)
and some other scalar function D1(M) that is determined from the particular solution of Eq. (7) D1

i ðMÞ as
follows:
D1 ¼
Z Mx

M0

D1
i dyi. ð9Þ
Scalar field D1(M) in Eq. (8) defines a field of discontinuities (or jumps) of potential of displacement field,
and it is determined from the non-integrable part of displacements D1

i . Contour integral in Eq. (9) depends
on the integration path. By definition, its value at any point M0, J

1ðM0Þ ¼
H
D1

i dyi depends on a trajectory
of integration.

The scalar function D1(M) is not differentiable in the common sense, otherwise it would satisfy the
homogeneous equation (3). The generalized derivative of the function D1(M) can be formally defined as
follows:
oD1

oxi
¼ D1

i .
Let as define now the Cauchy continuous medium with defects as such that the curls (�2xk) are the
sources of defects D1(M). Under the defects in the Cauchy model we will call the discontinuities of the sca-
lar potential of displacement field. Such defects are defining the continuous field D1

i on which the field of
defects J1 is constructed.

The major feature of the above model of medium with defects is that there is no generation of new de-
fects of the above-indicated type. In other words, the source of curls xk ¼ � 1

2

oD1
i

oxj
'ijk is absent. The follow-

ing differential law of conservation takes place:
oð�2xkÞ
oxk

¼ 0.
This law can be represented in the integral form:
txknk dF ¼ 0.
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Later expression demonstrates the absence of generation of defects in the considered representative volume
of the medium.

Let us note that for the Cauchy medium with defects the generalized coordinates are continuous func-
tions D0(M) and D1

i ðMÞ. They can serve as the arguments of the corresponding functional. Therefore, the
Cauchy medium with defects is a model with four degrees of freedom. In this case, the gradients of the gen-

eralized coordinates oD0

oxi
and

oD1
i

oxj
are the generalized velocities of the corresponding kinematic state. It can be

also observed that in the particular case when D0 = 0, the Cauchy medium model coincides with the clas-
sical model of theory of elasticity, in which the generalized coordinates in the variational description are the
components of the displacement vector Ri � D1

i , since D0(M) � 0.
3. The Papkovich–Cosserat continuous media model: Vector potential, vector field of defects

3.1. Defectless Papkovich medium

Consider a continuous medium with a non-symmetrical distortion tensor d0
in defined as a gradient of

some continuous vector field r0i
d0
ij ¼

or0i
oxj

. ð10Þ
It is well known that a tensor of a second rank d0
in can be resolved as follows:
d0
in ¼ c0in þ 1

3
h0din � x0

k'ink;
where term c0in þ 1
3
h0din defines a symmetrical part of the tensor d0

in, and the term x0
k'ink defines its anti-sym-

metric part; c0in is a deviator tensor or deviatoric strain;
1
3
h0din is a spherical tensor; and h0 is an amplitude of

the spherical tensor.
Consider now the homogeneous Papkovich equations that represent the existence conditions for the cur-

vilinear integral in definition of the displacement vector
ðd0
inÞ;m'nmj ¼ 0. ð11Þ
Eq. (11) is the existence criterion for the vector potential of the distortion tensor d0
in ¼ c0in þ 1

3
h0din � x0

k'ink.
This vector potential r0i is the displacement vector. There is a full analogy here with the case of scalar
potential for the displacement vector Ri in the defectless Cauchy continuous medium.

We will define a defectless Papkovich medium as a medium with a continuous vector potential of the
distortion tensor of deformation. In the defectless Papkovich medium the displacement vector is continuous
and the distortion tensor d0

in is a general solution of the homogeneous equation (11). That corresponds to
the case of absence of defects—dislocations. In the general case, the defectless Papkovich medium is the
Cauchy medium with a continuous displacement vector. Similarly to the Cauchy medium, the scalar defects
are present here since the continuous displacement vector contains both the integrable part oD0

oxi
, as well as a

continuous but non-integrable in the sense of Eq. (2) part ðD1
1Þ:
r0i ¼
oD0

oxi
þ D1

i .
In particular, in the case D0 � 0, the defectless Papkovich medium model coincides with the model of
classical theory of elasticity. In this case the displacement vector is continuous, but generally non-integrable
in the sense of Eq. (2), i.e., the scalar potential for the displacement field does not exist. In the more special
particular case D1

i ¼ 0 the defectless Papkovich medium is completely defectless since both, the dislocations
(the vector defects) and the scalar defects are absent in this case.
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3.2. Papkovich–Cosserat continuous medium with defects

In the defectless homogeneous Papkovich medium the distortion tensor is integrable since it can be
determined from Eq. (10) by means of integration over the displacement vector, and the integrability con-
ditions (11) are fulfilled.

On the contrary to that, for the Papkovich–Cosserat medium with defects, the distortion tensor of defor-
mation dij can be represented in the general case as a sum of two parts: the integrable part (d0

ij), and the non-
integrable part (D2

ij),
dij ¼ d0
ij þ D2

ij; ð12Þ
where d0
ij ¼ c0ij þ 1

3
h0dij � x0

k'ijk. Note that Eq. (12) is analogous to Eq. (6) written for the Cauchy medium
displacement vector.

Following the common procedure let us consider now the non-homogeneous Papkovich equations
ðdinÞ;m'nmj ¼ cin þ 1
3
hdin � xk'ink

� �
;m
'nmj ¼ Nij. ð13Þ
Here ðdinÞ;m ¼ cin þ 1
3
hdin � xk'ink

� �
;m

is the general tensor filed of curvatures of the model under
consideration.

On account of relations (11) and (12), Eq. (13) yields
ðD2
inÞ;m'nmj ¼ Nij. ð14Þ
The continuous tensor of ‘‘inconsistencies’’ Nij defines the non-homogeneity of the Papkovich relations. The
following differential conservation law is valid for this tensor:
oNij

oxj
¼ 0.
In order to prove that, we will first apply the divergence operator to the left and right sides of Eq. (13)
o

oxj

odin

oxm
'nmj

� �
¼ oNij

oxj
.

In the left-hand side of this expression we have
o

oxj

odin

oxm
'nmj

� �
¼ o2din

oxj oxm
'nmj.
Evidently, the term o2din
oxj oxm

is symmetrical tensor with respect to indexes j and m. From the other side, by def-
inition the permutation symbol 'nmj is anti-symmetric tensor for the same pair of indexes. Therefore the
convolution of tensors o2din

oxj oxm
and 'nmj in indexes j and m is equal to zero, which proves the above conserva-

tion law.
The solution of the above non-homogeneous Papkovich equation (13) with respect to cij, xk and h can be

represented as a sum of the following general solution of the homogeneous Papkovich equation for c0ij, x
0
k ,

h0:
c0ij ¼
1

2

or0i
oxj

þ 1

2

or0j
oxi

� 1

3

or0k
oxk

dij; x0
k ¼ � 1

2

or0i
oxj

'ijk; h0 ¼ or0k
oxk

;

and the partial solution of the non-homogeneous Papkovich equation (13) denoted by cNij, x
N
k and hN. As a

result, we can write



S.A. Lurie, A.L. Kalamkarov / International Journal of Solids and Structures 43 (2006) 91–111 97
cij ¼ c0ij þ cNij ¼
1

2

or0i
oxj

þ 1

2

or0j
oxi

� 1

2

or0k
oxk

dij

 !
þ cNij;

xk ¼ x0
k þ xN

k ¼ � 1

2

or0i
oxj

'ijk

� �
þ xN

k ;

h ¼ h0 þ hN ¼ or0k
oxk

� �
þ hN
and
dij ¼ d0
ij þ dN

ij; dN
ij ¼ cNin þ 1

3
hNdin � xN

k 'ink.
The partial solutions of non-homogeneous Papkovich equation with respect to distortion tensor dN
ij, or

with respect to cNij, x
N
k and hN, which is the same, can be considered as the degrees of freedom that are inde-

pendent of displacements. For the full analogy with the earlier considered case, the distortion tensor
dN
ij � D2

ij ¼ cNin þ 1
3
hNdin � xN

k 'ink can be considered as ‘‘generalized displacements’’ (‘‘plastic distortion’’;
see De Wit, 1973; Kadic and Edelen, 1983). Since the ‘‘inconsistencies’’ tensor Nij is related to the ‘‘general-
ized displacements’’ through the following relations:
Nij ¼ cNin þ 1
3
hNdin � xN

k 'ink
� �

;m
'nmj; ð15Þ
it can be interpreted as the tensor of ‘‘generalized strains’’ for these ‘‘generalized displacements’’.

Using the Cosserat terminology, we can call x0
k ¼ � 1

2

or0i
oxj

'ijk as the restricted curl, and xN
k as a free curl or

spin (‘‘plastic curl’’; see De Wit, 1973). Analogously we will call c0ij and h0 as restricted strains and cNij, h
N as

the free strains.
Eqs. (11)–(15) describe the kinematics of continuous media with defects of a dislocation type. These

relations lead to the following conclusions:

1. The fields of free strains and spins cannot be uniform because in that case Nij = 0.
2. The fields of spins have the sources.

Indeed, we can show by making use of Eq. (15) that the field of spins is not a vorticity field. By applying
convolution of left and right sides of Eq. (15) with dij we obtain
oxN
k

oxk
¼ � 1

2
Nkk 6¼ 0.
At the same time, the following equality takes place for the vortex fields with the vector of curls x0
k :
ox0
k

oxk
¼ 0.
Let us call the models of continuous media with vector potential as the Papkovich–Cosserat media. The
kinematics of such media has the following structure:

• The displacement field Ri represents a superposition of the following two fields: the continuous field r0i
and the field of displacement jumps or discontinuities D2

i , i.e.,
Di ¼ r0i þ D2
i ¼

oD0

oxi
þ D1

i

� �
þ D2

i ; D2
i ¼

Z M

M0

D2
ij dyj D2

ij ¼ cNij þ k
1

3
hNdij � xN

k 'ijk

� �
.
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The classical displacements Ri are determined by the continuous part only, and they can be represented
as follows: Ri � r0i , r

0
i ¼ oD0

oxi
þ D1

i .
Unlike of the continuous displacement field Ri, the vector field Di defines the complete displacement field
with account of dislocations (jumps). The defective displacements Di are the sum of the classical dis-
placements Ri (Ri � r0i ) and the dislocations D2

i .
• The field of displacement jumps D2

i can be expressed in terms of fields of free strains and spins by means
of the following relation (analogous to the Chesaro formula):
D2
i ¼

Z M

M0

D2
ij dyj ¼

Z Mx

M0

cNij þ
1

3
hNdij � xN

k 'ijk

� �
dyj.
• Tensor of ‘‘inconsistencies’’ of displacements Nij is the tensor of dislocations (see De Wit, 1973; Kadic
and Edelen, 1983).

• The following differential conservation law takes place for the dislocation tensor:
oNij

oxj
¼ 0.
• This conservation law can be represented in the integral form as follows:
Z Z Z
oNij

oxj
dV ¼ tNijnj dF ¼ 0.
• The flux of tensor Nij through the plane of planar contour can be chosen as a measure of defects (dislo-
cations) (see Kroner, 1982; De Wit, 1960, 1973):
Z Z

þ

Nijnj dF ¼ nj

Z Z
0

Nij dF ;
where F is a closed surface stretched over the planar contour.

In other words, the flux of tensor Nij through the arbitrary surface stretched over the chosen planar con-
tour is invariant. Therefore, it can be chosen as a measure of dislocations.

It is important to note that one of major features of the Papkovich–Cosserat continuous media is that it
is not possible to describe the birth or disappearance of dislocations in the framework of these media mod-
els becausetNijnj dF ¼ 0. Therefore, the defects associated with the conserved dislocation tensor Nij cannot
be born or disappear (see Kroner, 1982; De Wit, 1973).

There are two levels of defects in the Papkovich–Cosserat media. The defects of the first rank are related
to the conserved dislocations and they are defined by the formula
D2
i ¼

Z M

M0

D2
ij dyj.
The zero-rank defects are associated with the two types of scalar defects. First type is related to the con-
served scalar defects defined by a scalar field (9), D1 ¼

RM
M0

D1
i dyi, see the Cauchy media. The second type is

related to such scalar defects that have the conserved dislocations as their sources. These later scalar defects
are described by the field D2 ¼

RM
M0

D2
i dyi, where D2

i ¼
RM
M0

D2
ij dyj. They, evidently can be born or can dis-

appear because as it was shown earlier, the fields of spins have the sources,
oxk

oxk
¼ ox0

k

oxk
þ oxN

k

oxk
¼ oxN

k

oxk
6¼ 0.
Note that under the generalized defects we mean the discontinuous part of the considered kinematic
characteristics of the medium. The corresponding field is called the defectness field.
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In the general case of the Papkovich–Cosserat media the defectness fields of different ranks (scalar, vec-
tor and tensor) are defined by the following relations:

• Defectness field of a zero-rank (scalar):
D ¼ ðD0Þ þ D1 þ D2; D1 ¼
Z Mx

M0

D1
i dyi; D2 ¼

Z Mx

M0

D2
i dyi; D2

i ¼
Z Mx

M0

D2
ij dyj.
• Defectness field of a first-rank (vector):
Di ¼
oD0

oxi
þ D1

i

� �
þ D2

i ; D2
i ¼

Z Mx

M0

D2
ij dyj.
• A tensor characteristic of the Papkovich–Cosserat media is the tensor field
Dij ¼
o

oxj

oD0

oxi
þ D1

i

� �
þ D2

ij; Dij � dij D2
ij ¼ dN

ij ¼ cNij þ
1

3
hNdij � xN

k 'ijk

� �
;

here dij is a distortion tensor in the Papkovich media.However, the tensor field Dij is not a defectness field of
a second rank since it does not contain a discontinuous part. First component in the above expression for
Dij is a continuous and integrable part of the tensor field,
d0
ij ¼

o

oxj

oD0

oxi
þ D1

i

� �
; ðd0

ijÞ;m'nmj ¼ 0.
The second component D2
ij in the above expression is a continuous non-integrable part, see Eq. (14). It

should be noted for a comparison that among the characteristics of the Cauchy medium, apart of a scalar
field of defects D = D0 + D1 (where D1 is a discontinuous component), is also a vector field Di ¼ oD0

oxi
þ D1

i

that is not a defectness field.

The Papkovich–Cosserat media allow two different types of the sources of defects:

1. The sources of a second rank (sources of dislocations) T 2
ij are defined by a tensor T ij � T 2

ij ¼ Nij
T ij � T 2
ij ¼

oD2
in

oxm
'nmj ¼

o cNin þ 1
3
hNdin � xN

k 'ink
� �

oxm
'nmj.
2. The sources of a first rank (sources of the scalar defects) Ti are defined by the spins, i.e., by a vector
which can be obtained through the convolution of the total tensor of deformations Dnm with the tensor
'nmj in indexes n and m:
T i � T 1
i ¼

o

oxm
ðRnÞ þ D2

nm

� �
'nmi Ri � r0i ; r0i ¼

oD0

oxi
þ D1

i

� �
.

Since o
oxm

oD0

oxn

� �
'nmi � 0, we get
T i ¼ ðT iÞ1 þ ðT iÞ2 ¼
oD1

n

oxm
'nmi þ D2

nm'nmi; ðT iÞ1 ¼
oD1

n

oxm
'nmi ¼

oRn

oxm
'nmi; ðT iÞ2 ¼ D2

nm'nmi ¼ �2xN
i .
The sources of defects (Ti)1 are related only to the conserved scalar defects D1, since the vector of restricted
curls ðT iÞ1 ¼ oRn

oxm
'nmi in the general case is not zero, see the Cauchy media. These sources of defects satisfy

the conservation condition:
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divððT iÞ1Þ ¼
oðT iÞ1
oxi

¼ o

oxi

oRn

oxm
'nmi

� �
¼ 0.
For the sources of defects (Ti)2 the conservation condition is not satisfied:
oðT iÞ2
oxi

¼ oD2
nm

oxi
'nmi ¼ T ii 6¼ 0 T ij � T 2

ij ¼ Nij;
oxN

k

oxk
¼ � 1

2
Nkk 6¼ 0

� �
.

Therefore, these sources of the scalar defects can be born and can disappear.
4. The Saint-Venant continuous media model: Tensor potential, tensor field of defects

In order to construct the models that will allow the birth and disappearance of dislocations, it is neces-
sary to develop the kinematic continuous media models of a higher order. We will call them the Saint-
Venant continuous media.

4.1. Defectless Saint-Venant medium

Let us introduce the curvatures: cijn ¼
ocij
oxk
, hj ¼ oh

oxj
, xij ¼ oxi

oxj
. These tensors formally define a tensor of cur-

vatures of a third order (see Fleck and Hutchinson, 1993, 1997, 2001; Gao et al., 1999; Mindlin, 1964) Dijn

(xin,hn,cijn), which is a derivative of the distortion tensor, i.e.,
ðdinÞ;j ¼ Dijn; dij ¼ dijðM0Þ þ
Z M

M0

Dijn dxn. ð16Þ
Here din is the distortion tensor, and Dijn ¼ cijn þ 1
3
hndij � xqn'ijq, also cijn = cjin, ckkn = 0.

Following the common procedure let us consider the conditions of integrability for the distortion tensor,
oDijn

oxm
'nmk ¼ 0. ð17Þ
Eq. (17) represents the existence conditions for the contour integral (or integrability conditions) in the
definition of distortion tensor din in terms of tensor of curvatures Dijn. Let us call relations (17) as the gen-
eralized Saint-Venant relations. The integrability conditions represent the existence criterion for the tensor
potential of the tensor of curvatures Dijn = (din),j. The role of this tensor potential of a second rank is played
by the distortion tensor din. There is a full analogy here with the case of scalar potential for the vector Ri

(the above Cauchy continuous media model) as well as with the case of vector potential for the distortion
tensor (the above Papkovich–Cosserat continuous media model).

Let us now prove that Eq. (17) is a generalization of the well-known Saint-Venant�s compatibility equa-
tions. First we will rewrite Eq. (17) as follows:
o cijn þ 1
3
hndij � xqn'ijq

� �
oxm

'nmk ¼
ocijn
oxm

'nmk þ
o 1

3
hndij
oxm

'nmk �
oxqn'ijq
oxm

'nmk ¼ 0. ð18Þ
Allocate in the tensor equation (18) the anti-symmetric in indexes i, j part. Since first two terms are sym-
metric in these indexes, we get
oxqn'ijq
oxm

'nmk ¼ 0.
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This equation represents an existence condition for the vector potential xi for curvatures xij (xij ¼ oxi
oxj
).

From the other side, we know that the integrability, and therefore the existence conditions of the vector
of spins is given by Saint-Venant�s equations. The above equation coincides with the known Saint-Venant�s
equations if oxi

oxj
is expressed in terms of the derivatives of the components of tensor of deformations. Con-

sequently, Eq. (17) contains the Saint-Venant equations as a particular case.
It is easy to obtain the following generalized Saint-Venant�s equation (i.e., the compatibility equation) for

curvatures hn, from Eq. (18) by means of symmetrization and allocation of the spherical part in indexes i, j:
ohn
oxm

'nmk ¼ 0;
as well as the generalized Saint-Venant�s equation for the curvatures cijn,
ocijn
oxm

'nmk ¼ 0.
The above generalized compatibility equations are new. They probably fell out of attention of research-
ers in earlier studies because in the framework of the classical theory there was no need to define the defor-
mations cij and h in terms of the curvatures cijn, hj.

The generalized compatibility equations represent the existence conditions for the potentials cij and h for
the corresponding curvatures cijn ¼

ocij
oxn
, hj ¼ oh

oxj
.

We will call the media under study as the Saint-Venant continuous media precisely because the general-
ized Saint-Venant�s equations (17) lay the basis for the analysis of their kinematics. In the defectless Saint-
Venant media the tensor of curvatures Dijn is integrable in the sense of Eq. (16). The distortion tensor dij can
be determined uniquely from Dijn, since the integrability conditions (17) for Dijn are fulfilled. In the defect-
less Saint-Venant�s media the distortion tensor din is continuous and the tensor of curvatures Dijn is a gen-
eral solution of the homogeneous equation (17).

Note that in the defectless Saint-Venant media the generalized disclinations are absent. In these media,
similarly to the Papkovich–Cosserat media with defects, only the conserved dislocations D2

i can be present
(the defects of a first rank), as well as two types of scalar defects D1 and D2; D1 being the conserved scalar
defects, and D2 the scalar defects that can be born and disappear on the conserved dislocations D2

i .

4.2. Saint-Venant continuous medium with defects—generalized disclinations

In the general case when the integrability conditions (17) are not fulfilled, the following non-homoge-
neous equation takes place:
oDijn

oxm
'nmk ¼ Xijk. ð19Þ
Here Xijk is the continuous tensor of ‘‘inconsistencies’’ given by the relation
Xijk ¼ Cijk þ 1
3
Hkdij � Xqk'ijq. ð20Þ
Tensor Xijk is a reason of non-homogeneity of the generalized Saint-Venant conditions (19). Alternating
and balancing Eqs. (19) and (20) with respect to the first two subscripts, we obtain
oxin

oxm
'nmj ¼ Xij; ð21Þ

ohn
oxm

'nmj ¼ Hj; ð22Þ
ocijn
oxm

'nmk ¼ Cijk. ð23Þ
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By continuing and generalizing the common algorithm we can assume that the curvature fields are inte-
grable or non-integrable depending on equality or non-equality to zero of the corresponding tensors of
‘‘inconsistencies’’ Xij, Hj and Cijk. Let us assume that the tensors of ‘‘inconsistencies’’ (De Wit, 1973).
Xij, Hj and Cijk are not equal to zero. By the virtue of Eq. (20) these tensors satisfy the following differential
conservation laws:
oXij

oxj
¼ 0;

oHj

oxj
¼ 0;

oCijk

oxk
¼ 0.
The fields of full curls can be divided into two parts: continuous part and a part of jumps or disconti-
nuities (spins),
xi ¼ � 1

2

or0n
oxm

'nmi þ xN
i

� �
þ xX

i ; xij ¼ � 1

2

o2r0n
oxj oxm

'nmi þ
oxN

i

oxj
þ xX

ij

� �
.

Here xX0
ij ¼ � 1

2

o2r0n
oxj oxm

'nmi þ oxN
i

oxj
can be interpreted as the general solution of the homogeneous Saint-

Venant�s equation (21)
oxX0
in

oxm
'nmj ¼ 0;
and field of jumps xX
ij , that can be interpreted as a partial solution of the non-homogeneous Saint-Venant�s

equation (21)
oxX
in

oxm
'nmj ¼ Xij ¼ � 1

2
Xnmj'nmj

� �
.

Analogously the strain fields can be also divided into two parts: continuous part and a part of jumps or
discontinuities,
h ¼ or0k
oxk

þ hN
� �

þ hX; hj ¼
o
2r0k

oxj oxk
þ ohN

oxj
þ hXj

� �
and
cij ¼
1

2

or0i
oxj

þ 1

2

or0j
oxi

� 1

2

or0k
oxk

dij þ cNij

 !
þ cXij ;

cijk ¼
1

2

o2r0i
oxk oxj

þ 1

2

o
2r0j

oxk oxi
� 1

2

o
2r0q

oxk oxq
dij þ

ocNij
oxk

þ cXijk

 !
.

Here hX0i ¼ o2r0k
oxj oxk

þ ohN

oxj
is the general solution of the homogeneous equation (22)
ohX0n
oxm

'nmj ¼ 0;
and field of jumps hXi is a partial solution of the non-homogeneous equation (22)
ohXn
oxm

'nmj ¼ Hjð¼ XnmjdnmÞ.
Correspondingly,
cX0ijk ¼
1

2

o2r0i
oxk oxj

þ 1

2

o
2r0j

oxk oxi
� 1

2

o
2r0q

oxk oxq
dij þ

ocNij
oxk
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can be interpreted as the general solution of the homogeneous equation (23)
ocX0ijn
oxm

'nmk ¼ 0;
and field of jumps cXijk can be interpreted as a partial solution of the non-homogeneous equation (23)
ocXijn
oxm

'nmk ¼ Cijk ¼ 1

2
Xijk þ

1

2
Xijk �

1

3
Xnmkdij

� �
.

As a result, the particular solution of Eq. (19): D3
ijkcan be determined:
oD3
ijn

oxm
'nmk ¼ Xijk; D3

ijk ¼ cXijk þ
1

3
hXk dij � xX

qk'ijq.
Note that in the Saint-Venant media it is possible to define a tensor field of a third rank:
Dijk ¼
od0

ij

oxk
þ D3

ijk ¼
o2r0i

oxk oxj
þ
odN

ij

oxk
þ D3

ijk ¼
o2

oxk oxj

oD0
i

oxi
þ D1

i

� �
þ
oD2

ij

oxk

" #
þ D3

ijk

¼ o

oxk

o

oxj

oD0
i

oxi
þ D1

i

� �
þ D2

ij

� �
þ D3

ijk;

Dijk � ðdikÞ;j D2
ij ¼ dN

ij ¼ cNij þ
1

3
hNdij � xN

k 'ijk; D3
ijk ¼ cXijk þ

1

3
hXk dij � xX

qk'ijq

� �
.

Let us call the defectness field such a field that contains not only a continuous part but also a field of
defects. Tensor field Dijk is not a defectness field, similarly to the fact that tensor field of a second rank
Dij is not a defectness field in the Papkovich–Cosserat media of a lower level.

The defective fields of different ranks (scalar, vector and tensor) in the Saint-Venant media are defined by
the following relations:

• Defectness field of a zero rank (scalar):
D ¼ ðD0Þ þ D1 þ D2 þ D3;

D1 ¼
Z Mx

M0

D1
i dyi; D2 ¼

Z Mx

M0

D2
i dyi; D2

i ¼
Z Mx

M0

D2
ij dyj;

D3 ¼
Z Mx

M0

D3
i dyi; D3

i ¼
Z Mx

M0

D3
ij dyj; D3

ij ¼
Z Mx

M0

D3
ijk dyk.
• Defectness field of a first rank (vector):
Di ¼
oD0

oxi
þ D1

i

� �
þ D2

i þ D3
i .
Defectness field of a first rank defines the general defectness field of displacements that includes all types of
dislocations: Z M Z Z� �
Ri ¼ ðr0i Þ þ RN
i þ RX

i ; D2
i � RN

i ¼
M

D2
ij dxj; D3

i � RX
i ¼ D3

ijk dxk dxj.
• Defectness field of a second rank
Dij ¼
o

oxj

oD0

oxi
þ D1

i

� �
þ D2

ij þ D3
ij.
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In the scalar defectness field D the defects are defined by D1, D2, D3; in the vector field Di by D2
i , D

3
i . In

the tensor defectness field Dij the defects are defined by D3
ij. There is a full analogy here with the case of

Papkovich–Cosserat media.
The continuous parts in the right-hand sides of the defectness fields of the first and second ranks are

shown in the brackets:
xk ¼ � 1

2

or0i
oxj

'ijk þ xN
k

� �
þ xX

k ;

h ¼ or0k
oxk

þ hN
� �

þ hX;

cij ¼
1

2

or0i
oxj

þ 1

2

or0j
oxi

� 1

3

or0k
oxk

dij þ cNij

 !
þ cXij ;

8>>>>>>>>><
>>>>>>>>>:

xij ¼ � 1

2

o
2r0n

oxj oxm
'nmi þ

oxN
i

oxj
þ xX

ij ;

hj ¼
o
2r0k

oxj oxk
þ ohN

oxj
þ hXj ;

cijk ¼
1

2

o
2r0i

oxk oxj
þ 1

2

o2r0j
oxk oxi

� 1

2

o2r0q
oxk oxq

dij þ
ocNij
oxk

þ cXijk.

8>>>>>>>>><
>>>>>>>>>:
Let us analyze now the sources of dislocations in the Saint-Venant medium. The sources of dislocations
are defined by the anti-symmetric part of the general tensor of curvatures (defectness tensor field) similarly
to Eq. (5) for the Cauchy media and Eq. (13) for the Papkovich–Cosserat media. Then
ðdinÞ;m'nmj ¼ Dinm'nmj ¼ cinm'nmj þ 1
3
hn'imj � xkm'ink'nmj ¼ Nij. ð24Þ
Note that the meaning of the density of dislocations Nij in Eq. (24) differs in the general case from the
meaning of the density of dislocations in the Papkovich–Cosserat medium, Eq. (14). Equality (24) allows to
establish a structure of the density of dislocations in the Saint-Venant medium. We have
Dijk'jkq ¼ 'jkq
o

oxk

o

oxj

oD0
i

oxi
þ D1

i

� �
þ D2

ij

� �
þ D3

ijk'jkq ¼
oD2

ij

oxk
'jkq þ D3

ijk'jkq;

D2
ij ¼ dN

ij ¼ cNij þ
1

3
hNdij � xN

k 'ijk; D3
ijk ¼ cXijk þ

1

3
hXk dij � xX

qk'ijq.
Therefore, the quantity Nij from (24) can be written as
Nim ¼ o

oxn
cNij þ

1

3
hNdij � xN

k 'ijk

� �
'jnm þ cXijn þ

1

3
hXn dij � xX

kn'ijk

� �
'jnm ¼ N2

im þ N3
im;
where N2
iq ¼

oD2
ij

oxk
'jkq, N

2
iq ¼ D3

ijk'jkq.

First component in the above equality for the density of dislocations Niq defines the conserved vector
field of defects—dislocations, and it coincides with the density of dislocations in the Papkovich–Cosserat
medium. The second component N3

iq is related to the defects of a higher level, i.e., disclinations. This com-
ponent of the density of dislocations defines the defects that can be born or disappear on the disclinations.

In order to use the unified notation for sources of defects (similarly to the Papkovich–Cosserat media
case) we will adopt the following notation:
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Xijk � T ijk ¼ T 3
ijk;

Nij ¼ N2
ij þ N3

ij � T ij ¼ ðT ijÞ2 þ ðT ijÞ3;

� 2ðx0
i þ xN

i þ xX
i Þ ¼ T i ¼ ðT iÞ1 þ ðT iÞ2 þ ðT iÞ3.
The above relation (24) represents the existence condition for the dislocations. Correspondingly, the
right-hand sides of Eq. (24) are the sources of dislocations. Therefore by means of nine non-homogeneous
Papkovich equations we can express nine components of the tensor of curvatures xij in terms of dislocation
tensor Nij, vector hm and the remaining curvatures cinm:
xji ¼ Nij � 1
2
Nkkdij � cinm'nmj � 1

3
hm'imj.
The existence conditions for jumps (or discontinuities) in full curls xi will follow from the generalized Saint-
Venant�s equations:
oxin

oxm
'nmj ¼ Xij
or
o

oxm
Nni �

1

2
Nkkdni � cnpq'pqi �

1

3
hk'nki

� �
'nmj ¼ Xij. ð25Þ
The existence conditions for jumps or discontinuities in the free change of volume after excluding the
curvature tensor hk by means of Eq. (25) and on account of the generalized Saint-Venant equations lead
to the generalization of the differential conservation law for dislocations. Indeed, let us express explicitly
the curvatures related to the free change of volume from (25)
1

3

ohj
oxi

¼ Xij �
1

2
Xkkdij

� �
� oNpk

oxq
dki'pqj �

1

2
dij'pqk �

1

2
dpk'iqj

� �
þ
ocnpq
oxm

'pqi'nmj �
1

2
'pqk'nmkdij

� �
.

Substitute the obtained expressions for
ohj
oxi

into the existence conditions for jumps (or discontinuities) in the
free change of volume
ohn
oxm

'nmj ¼ Hj.
We obtain the following chain of equalities, making use of the equality (24):
1

3

ohj
oxi

'jil ¼
1

3
Hl ¼ Xij'jil �

oNpk

oxq
ð'pqj'jkl � dpkdqlÞ þ

ocnpq
oxm

'pqi'nmj'jil

¼ Xij'jil �
oNpk

oxq
ðdpkdql � dpldqk � dpkdqlÞ þ

ocnpq
oxm

ðdpldqj � dpjdqlÞ'nmj

¼ Xij'jil þ
oNlk

oxk
þ
ocnlj
oxm

'nmj �
ocnjl
oxm

'nmj ¼ Xij'jil þ
oNlk

oxk
� Cnln.
By moving the divergence of the dislocation tensor to the left-hand side, we will finally arrive to the follow-
ing equation:
oNlk

oxk
¼ Cnln þ

1

3
Hl � Xij'jil ¼ Xlkk. ð26Þ
Eq. (26) transforms into the conservation law for the dislocation tensor in the Papkovich–Cosserat media
model in the case of zero right-hand side, i.e., 1

3
Hl � Xij'jil þ Cnln ¼ 0. For non-zero right-hand side this

equation will describe the birth and disappearance of dislocations.
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Eq. (26) can be represented as follows using the above introduced notation:
oT jk

oxk
¼ T jkk ðNij � T ij; Xijk � T ijkÞ.
We will interpret the field of jumps xX
i (the Frank vector field) as a vector field of disclinations, and we

will call the tensor of ‘‘inconsistencies’’ Xij as the tensor of disclinations, following De Wit (1973). Note that
unlike of classical view, the dislocations can be borne and disappear even in the absence of disclinations,
i.e., Xij = 0, if we will take into account existence of two new classes of defects defined by the ‘‘inconsisten-
cies’’ tensors Hl and Cnln. These tensors like the disclinations are equally possible sources of dislocations.
And the defects defined by these tensors play the same role as the disclinations play in birth and disappear-
ance of dislocations.

Let us call the scalar field of jumps in the change of volume hX as pores, and the vector of ‘‘inconsis-
tency’’ of free change of volume Hj as vectors of cavitation. We will also call the tensor field of jumps in
deviator cXij as the field of twinning, and the ‘‘inconsistencies’’ tensor Cijk as a tensor of twinning.

The Saint-Venant continuous media are described in the general case by 40 degrees of freedom: D0r0i , x
N
k ,

hN, cNij, x
X
ij , h

X
j , and cXijk. They allow a three-level system of defects. The zero level of defects includes three

types of defects: D1, D2, D3. The first level of defects corresponds to dislocations that may be conserved, as
well as they may be borne or disappear. The second level of defects corresponds to the non-conservable
disclinations, cavitations and twinnings. The set of the Saint-Venant media contains in itself the sub-sets
of the Papkovich–Cosserat media as well as the Cauchy media. The Papkovich–Cosserat media are de-
scribed by 13 degrees of freedom: D0r0i , x

N
k , h

N, and cNij. And the classical Cauchy media are described by
only three degrees of freedom r0i .

The following models can be constructed in the framework of the Saint-Venant kinematic continuous
media model as the particular cases:

• Media with ‘‘turbulence’’ described by 15 degrees of freedom r0i , x
N
k , and xX

ij , in which the spins xN
k are

conserved but the spins xX
k may be borne or disappear;

• ‘‘Cavitational’’ media described by seven degrees of freedom r0i , h
N, and hXj , in which the pores hN are

conserved but the pores hX may be borne or disappear.
• Media with twinning described by 23 degrees of freedom r0i , c

N
ij, and cXijk, in which the free shifts cNij are

conserved but the free distortions cXij may be borne or disappear, like it happens for example in the pro-
cesses of crystallization or polymerization.
5. The Nth level continuous media model: Tensor potential of Nth rank

In this section we develop the kinematic model for defects of (N � 1)th level. For this purpose, we define
the conserved tensor of ‘‘inconsistencies’’ T N

...q � T ...q of (N)th rank from the equation
oT N
...q

oxq
¼ 0; ð27Þ
where q is a last Nst subscript of the tensor of ‘‘inconsistencies’’. Then the field of multi-strains D...n of Nth
rank will be defined as a general solution of the conservation equation (27)
T N
...q ¼

oD...n
oxm

'nmq ðT N
...q � T ...qÞ. ð28Þ
Representing the solution of this non-homogeneous equation of compatibility as a sum of the general
solution oD...

oxn
of the homogeneous equation (27) ðoD

N...n
oxm

'nmq ¼ 0Þ and a particular solution DN
...n of the

non-homogeneous equation (28) we obtain
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D...n ¼
oD...
oxn

þ DN
...n. ð29Þ
Here tensor D... of (N � 1)st rank can be interpreted as a tensor potential for some tensor of Nth rank. Let
us call this tensor oD...

oxn
as a tensor of restricted (integrable) multi-deformation; and the tensor DN

...n we will
call a tensor of a free (non-integrable) multi-deformation. From the other side, D... can be considered as a
continuous part of the field of multi-displacements. By representing the field of multi-displacements in the
form analogous to the field of multi-strains we can write for the tensor of multi-displacement:
D..k ¼
oDN�2

..
oxk

þ DN�1
..k . ð30Þ
Therefore the tensor of multi-displacements is represented as a sum of integrable oDN�2..
oxk

and non-integrable
DN�1
..k components. Then, with the account of Eqs. (29) and (30) we can write
D..k n ¼
o

oxn

oDN�2
..

oxk
þ DN�1

..k

� �
þ DN

..k n; D...n � D..k n; DN
...n � DN

..kn. ð31Þ
Here k is a last but one subscript of the defectness field D..kn of Nth rank or it is a last subscript of the
defectness field D..k of (N � 1)st rank.

The complete field of multi-displacements D..k (defectness filed) can be determined from Eq. (31) by
means of the generalized Chesaro formulae in the form of sum of a continuous component of multi-dis-

placements (oD
N�2..
oxk

þ DN�1
..k ) and a field of multi-dislocations DN

..k (defects of (N � 1)st rank)
D..k ¼
oDN�2

..
oxk

þ DN�1
..k

� �
þ DN

..k; DN
..k ¼

Z Mx

M0

DN
..k n dyn.
That leads to the formal definition of the ‘‘inconsistencies’’ tensor of a last but one level T N
..q of (N � 1)st

rank
oD..k
oxn

'knq ¼
o2DN�2

..
oxn oxk

'knq þ
oDN�1

..k
oxn

'knq þ DN
..k n'knq ¼

oDN�1
..k

oxn
'knq þ DN

..k n'knq ¼ T ..q
or
oD..k
oxn

'knq ¼ T ..q.
The law of birth and disappearance of sources of defects of the last but one level takes the following form:
oT ..q
oxq

¼ o

oxq

oDN�1
..k

oxn
'knq þ DN

..k n'knq

� �
¼ oDN

..k n
oxq

'nqk ¼ T ..kk.
In result
oT ..q
oxq

¼ T ..kk. ð32Þ
Here T..kk is a tensor of (N � 1)nd rank, since it is formed by the convolution in last two indexes of the
corresponding tensor of Nth rank, compare with the Saint-Venant media case. Tensor T..kk defines the
sources of defects of (N � 1)nd rank. After N iterations of this algorithm we will arrive to the field of mil-
ti-displacements of the zero rank, i.e., to the scalar field D. That will be the natural conclusion of the
algorithm.

Note in conclusion that the above-described algorithm can be considered as a realization of the math-
ematical induction in the construction of the geometrical theory of defects of Nth rank.
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6. Classification of the fields of defects

The above introduced algorithm of the kinematic analysis of the fields of defects allows us to introduce
the following general classification of kinematic models for continuum media with defects. This classifica-
tion is in a good agreement with the available experimental data.

1. The facts of generation and healing of defects of up to the second level have been validated, namely:
• zero level defects with the tensor of ‘‘inconsistencies’’ Ti = �2xi (turbulence as a defect of the poten-

tial state of the continuous medium);
• first level defects with the tensor of ‘‘inconsistencies’’ Tij = Nij (dislocations); and
• second level defects with the tensor of ‘‘inconsistencies’’ Tijk = Xijk (generalized disclinations—

‘‘classical’’ disclinations, cavitation, twinning).
Indeed, turbulence is a well studied phenomenon. And the defects of dislocations and disclinations are

well established experimentally. In the present paper we have offered the explanation for the processes of
generation and healing of defects. And we established the interrelation between these processes.
2. After we established that the processes of generation and healing of disclinations take place, in accor-

dance with the present study we should acknowledge the existence of defects of third level with the con-
served tensor of ‘‘inconsistencies’’ Tijnm = Hijnm. And therefore it is necessary to take them into account.
Otherwise the generalized disclinations could not be born or disappear.

3. The model of continuous media of Nth level with defects has the following kinematic structure:
• The defectness fields up to the Nth rank inclusive are determined as follows:
D ¼ ðD0Þ þ D1 þ D2 þ D3 þ D4 þ � � � ;

Di ¼
oD0

oxi
þ D1

i

� �
þ D2

i þ D3
i þ D4

i þ � � � ;

Dij ¼
o2D0

oxj oxi
þ oD1

i

oxj
þ D2

ij

� �
þ D3

ij þ D4
ij þ � � � ;

Dijk ¼
o
3D0

oxk oxj oxi
þ o

2D1
i

oxk oxj
þ
oD2

ij

oxk
þ D3

ijk

 !
þ D4

ijk þ � � � ;

Dijks ¼
o
4D0

oxs oxk oxj oxi
þ o

3D1
i

oxs oxk oxj
þ

o2D2
ij

oxs oxk
þ
oD3

ijk

oxs
þ D4

ijks

 !
þ � � � ;
where all the expressions in brackets represent the continuous parts of fields.
• The discontinuous fields of defects are defined by the following equalities:
D1 ¼
Z Mx

M0

D1
i dyi; D2 ¼

Z Mx

M0

D2
i dyi; D3 ¼

Z Mx

M0

D3
i dyi; D4 ¼

Z Mx

M0

D4
i dyi; . . . ;

D2
i ¼

Z Mx

M0

D2
ijdyj; D3

i ¼
Z Mx

M0

D3
ij dyj; D4

i ¼
Z Mx

M0

D4
ij dyj; . . . ;

D3
ij ¼

Z Mx

M0

D3
ijk dyk; D4

ij ¼
Z Mx

M0

D4
ijk dyk; . . . ;

D4
ijk ¼

Z Mx

M0

D4
ijks dys; . . . ;

. . .
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In development of the mathematical models of continuous media with defects the above continuous fields
D0;D1

i ;D
2
ij;D

3
ijk;D

4
ijks; . . ., as well as their derivatives can serve as the arguments of the corresponding func-

tionals or the corresponding variational equations.
• The sources of defects of Nth rank satisfy Eqs. (28) and (32). In particular, if we assume that the

defects of fourth rank are conserved then the sources of defects (tensor of ‘‘inconsistencies’’) will sat-
isfy the following relations:
T ijkq ¼
oDijkn

oxm
'nmq ¼

oD3
ijkn

oxm
'nmq;

oT ijkq

oxq
¼ 0;

T ijk ¼
oDijn

oxm
'nmk ¼

oD2
ijn

oxm
'nmk þ D3

ijnm'nmk;
oT ijk

oxk
¼ T ijnn;

T ij ¼
oDin

oxm
'nmj ¼

oD1
in

oxm
'nmj þ D2

inm'nmj þ D3
inm'nmj;

oT ij

oxj
¼ T inn;

T i ¼
oDn

oxm
'nmi ¼

oD0
n

oxm
'nmi þ D1

nm'nmi þ D2
nm'nmi þ D3

nm'nmi;
oT i

oxi
¼ T nn.
4. The above-introduced classification indicates on the following connection between the processes of birth
and disappearance of defects of different levels:
oT i

oxi
¼ T ii;

oð�2xiÞ
oxi

¼ Nii;

oT ij

oxj
¼ T ijj;

oNij

oxj
¼ Xijj;

oT ijk

oxk
¼ T ijkk;

oXijk

oxk
¼ Hijkk;

oT ijkq

oxq
¼ 0ð¼ T ijkqqÞ;

oHijkq

oxq
¼ 0.
One of major properties of defects in the general hierarchy is that the defects of Nth rank are the only pos-
sible sources or discharges for the defects of (N + 1)st rank.
7. Conclusions

A new general theory of defects in continuous media is introduced in the present paper. It is shown that
the defects of all known types can be described in the framework of the presently developed theory (or clas-
sification) of defects.

1. Within this unified classification the models of continuous media that allow presence of potential of dis-
placements are interpreted as models of continuous media free of defects (the Cauchy continuous
media). The defects of zero rank are the discontinuities (jumps) in the potential of displacements. The
source of defects of zero level is the vector of curls (the tensor of first rank).

2. In the framework of the introduced unified classification of defects dislocations are defects of the first
rank (the Papkovich–Cosserat continuous media). These media allow a two-level system of defects,
the scalar defects D1, D2 and the dislocations D2

i . And in this case the dislocations are the conserved
defects, i.e., they cannot be born or disappear. The source of dislocations is a tensor of second rank.
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3. It is shown that the second level models (the Saint-Venant continuous media) have a complex structure.
They incorporate three types of defects. The source of defects in this case is a tensor of a third rank. The
following structure of defects of the second level is established:
• Disclinations can be attributed to the classical defects. The source of disclinations is the scew-symmet-

ric part of tensor of a third rank (Tijk�Tjik)—the anti-symmetric tensor in first two indexes i, j. The
disclinations are defects related to discontinuities (jumps) in the field of curls.

• Classification allows to predict the existence of two other types of defects in the continuous media of
the second level. Their sources are determined through the symmetrical part of tensor of a third rank
(Tijk + Tjik)—the symmetric tensor in first two indexes i, j. First of them describes the discontinuities
(jumps) in the change of volume, it is defined as a vector of ‘‘cavitation’’ Tkkj. Second type of these
new defects of second rank describes the discontinuities (jumps) in the components of deviatoric part
of strain tensor. The source of defects of a second type is a tensor of a third rank. It is defined as a
tensor of ‘‘twinning’’, 1

2
T ijk þ 1

2
T jik � 1

3
T qqkdij.

We called the defects of second level as the generalized disclinations.
4. The possibility of existence of defects of higher than second level is established. The necessity of existence

of defects of third level is defined by the condition of generation of defects of the second level. The source
of these defects is a tensor of forth rank, and they have a complex hierarchy within the their own class.

5. The classification of defects is generalized for the defects of any finite level. It is shown that the existence
of defects of Nth level is necessarily determined by a possibility of generation of defects of (N � 1)st
level.

6. The introduced classification allows to describe the set of arguments of a functional in developing the
mathematical continuous media models of a various complexity by means of the variational method:
• In mathematical formulation of the Cauchy continuum media model the main kinematic variables in

defining the Lagrangian of this model are the sufficient times differentiable fields D0 and D1
i .

• In mathematical formulation of the Papkovich–Cosserat continuum media models the main kine-
matic variables in defining the Lagrangian of these models are D0;D1

i ;D
2
ij. The set of the Papko-

vich–Cosserat media are described in the general case by 13 degrees of freedom, i.e., by the

continuous fields r0i ¼ oD0

oxi
þ D1

i

� �
, D2

ij, or otherwise x
N
k , h

N, and cNij. The set of the Papkovich–Cosserat

media contains in itself the sub-sets of the ‘‘classical’’ Cosserat media with six degrees of freedom r0i ,
xN

k , as well as the media with ‘‘porosity’’ with only four degrees of freedom r0i , h
N, and the media with

‘‘twinning’’ with eight degrees of freedom r0i , c
N
ij, and finally the classical (Cauchy) media with three

degrees of freedom r0i .
• In mathematical formulation of the Saint-Venant continuous media models it is necessary to keep in

mind that in the general case these models are described by 40 degrees of freedom, D0;D1
i ;D

2
ij;D

3
ijk.

Without account of the scalar defects, these media models allow a two-level system of defects. The
first level of defects corresponds to dislocations that may be conserved, as well as they may be borne
or disappear. The second level of defects corresponds to the conservable disclinations, cavitation and
twinning. The set of Saint-Venant�s continuous media contains in itself the sub-sets of the Papkovich–
Cosserat media with 12 degrees of freedom r0i , x

N
k , h

N, cNij, as well as the classical (Cauchy) media with
three degrees of freedom r0i .
7. The choice of certain type of kinematic structure of the continuous medium with defects is determined by
a requirement to describe certain physical properties of medium under study. For example, the models
constructed on the basis of the Cauchy media principally cannot be used for developing a theory of fine
dispersed composite materials. Indeed, the fine dispersed inclusions can be treated as dislocations in the
parent phase or in the matrix. The same is true for the poorly degassed matrix. In this case the gas bub-
bles can be treated as vacancies. Such dislocations cannot be born or disappear. Therefore the theory of
fine dispersed composite materials can be developed only on the basis of the model of continuum media
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with defects of the first level with conserved dislocations. If the phase transitions take place in the con-
tinuous medium then they can be connected with the birth of defects—dislocations in the parent phase.
It is wrong to attempt to develop such a medium model on the basis of the Papkovich–Cosserat contin-
uous media. As a minimum, the required model in such case will be the Saint-Venant continuous media
model with the generatable dislocations and conserved disclinations.
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